16 



3

Lesson No. 04

1.1. Segmented Memory Model

Rationale

In earlier processors like 8080 and 8085 the linear memory model was used to access memory. In linear memory model the whole memory appears like a single array of data. 8080 and 8085 could access a total memory of 64K using the 16 lines of their address bus. When designing iAPX88 the Intel designers wanted to remain compatible with 8080 and 8085 however 64K was too small to continue with, for their new processor. To get the best of both worlds they introduced the segmented memory model in 8088.

There is also a logical argument in favor of a segmented memory model in additional to the issue of compatibility discussed above. We have two logical parts of our program, the code and the data, and actually there is a third part called the program stack as well, but higher level languages make this invisible to us. These three logical parts of a program should appear as three distinct units in memory, but making this division is not possible in the linear memory model. The segmented memory model does allow this distinction.

Mechanism

The segmented memory model allows multiple functional windows into the main memory, a code window, a data window etc. The processor sees code from the code window and data from the data window. The size of one window is restricted to 64K. 8085 software fits in just one such window. It sees code, data, and stack from this one window, so downward compatibility is attained. 

However the maximum memory iAPX88 can access is 1MB which can be accessed with 20 bits. Compare this with the 64K of 8085 that were accessed using 16 bits. The idea is that the 64K window just discussed can be moved anywhere in the whole 1MB. The four segment registers discussed in the Intel register architecture are used for this purpose. Therefore four windows can exist at one time. For example one window that is pointed to by the CS register contains the currently executing code.

To understand the concept, consider the windows of a building. We say that a particular window is 3 feet above the floor and another one is 20 feet above the floor. The reference point, the floor is the base of the segment called the datum point in a graph and all measurement is done from that datum point considering it to be zero. So CS holds the zero or the base of code. DS holds the zero of data. Or we can say CS tells how high code from the floor is, and DS tells how high data from the floor is, while SS tells how high the stack is. One extra segment ES can be used if we need to access two distant areas of memory at the same time that both cannot be seen through the same window. ES also has special role in string instructions. ES is used as an extra data segment and cannot be used as an extra code or stack segment. 

Revisiting the concept again, like the datum point of a graph, the segment registers tell the start of our window which can be opened anywhere in the megabyte of memory available. The window is of a fixed size of 64KB. Base and offset are the two key variables in a segmented address. Segment tells the base while offset is added into it. The registers IP, SP, BP, SI, DI, and BX all can contain a 16bit offset in them and access memory relative to a segment base. 

The IP register cannot work alone. It needs the CS register to open a 64K window in the 1MB memory and then IP works to select code from this window as offsets. IP works only inside this window and cannot go outside of this 64K in any case. If the window is moved i.e. the CS register is changed, IP will change its behavior accordingly and start selecting from the new window. The IP register always works relatively, relative to the segment base stored in the CS register. IP is a 16bit register capable of accessing only 64K memory so how the whole megabyte can contain code anywhere. Again the same concept is there, it can access 64K at one instance of time. As the base is changed using the CS register, IP can be made to point anywhere is the whole megabyte. The process is illustrated with the following diagram.


[image: image1]
Physical Address Calculation

Now for the whole megabyte we need 20 bits while CS and IP are both 16bit registers. We need a mechanism to make a 20bit number out of the two 16bit numbers. Consider that the segment value is stored as a 20 bit number with the lower four bits zero and the offset value is stored as another 20 bit number with the upper four bits zeroed. The two are added to produce a 20bit absolute address. A carry if generated is dropped without being stored anywhere and the phenomenon is called address wraparound. The process is explained with the help of the following diagram.


[image: image2]
Therefore memory is determined by a segment-offset pair and not alone by any one register which will be an ambiguous reference. Every offset register is assigned a default segment register to resolve such ambiguity. For example the program we wrote when loaded into memory had a value of 0100 in IP register and some value say 1DDD in the CS register. Making both 20 bit numbers, the segment base is 1DDD0 and the offset is 00100 and adding them we get the physical memory address of 1DED0 where the opcode B80500 is placed. 

Paragraph Boundaries

As the segment value is a 16bit number and four zero bits are appended to the right to make it a 20bit number, segments can only be defined a 16byte boundaries called paragraph boundaries. The first possible segment value is 0000 meaning a physical base of 00000 and the next possible value of 0001 means a segment base of 00010 or 16 in decimal. Therefore segments can only be defined at 16 byte boundaries.

Overlapping Segments

We can also observe that in the case of our program CS, DS, SS, and ES all had the same value in them. This is called overlapping segments so that we can see the same memory from any window. This is the structure of a COM file.

Using partially overlapping segments we can produce a number of segment, offset pairs that all access the same memory. For example 1DDD:0100 and IDED:0000 both point to the same physical memory. To test this we can open a data window at 1DED:0000 in the debugger and change the first three bytes to “90” which is the opcode for NOP (no operation). The change is immediately visible in the code window which is pointed to by CS containing 1DDD. Similarly IDCD:0200 also points to the same memory location. Consider this like a portion of wall that three different people on three different floors are seeing through their own windows. One of them painted the wall red; it will be changed for all of them though their perspective is different. It is the same phenomenon occurring here.

The segment, offset pair is called a logical address, while the 20bit address is a physical address which is the real thing. Logical addressing is a mechanism to access the physical memory. As we have seen three different logical addresses accessed the same physical address.


[image: image3]
Exercises

1. How the processor uses the address bus, the data bus, and the control bus to communicate with the system memory?

2. Which of the following are unidirectional and which are bidirectional?

a. Address Bus

b. Data Bus

c. Control Bus

3. What are registers and what are the specific features of the accumulator, index registers, program counter, and program status word?

4. What is the size of the accumulator of a 64bit processor?

5. What is the difference between an instruction mnemonic and its opcode? 

6. How are instructions classified into groups?

7. A combination of 8bits is called a byte. What is the name for 4bits and for 16bits?

8. What is the maximum memory 8088 can access?

9. List down the 14 registers of the 8088 architecture and briefly describe their uses.

10. What flags are defined in the 8088 FLAGS register? Describe the function of the zero flag, the carry flag, the sign flag, and the overflow flag.

11. Give the value of the zero flag, the carry flag, the sign flag, and the overflow flag after each of the following instructions if AX is initialized with 0x1254 and BX is initialized with 0x0FFF.

a. add ax, 0xEDAB

b. add ax, bx

c. add bx, 0xF001

12. What is the difference between little endian and big endian formats? Which format is used by the Intel 8088 microprocessor?

13. For each of the following words identify the byte that is stored at lower memory address and the byte that is stored at higher memory address in a little endian computer. 

a. 1234

b. ABFC

c. B100

d. B800

14. What are the contents of memory locations 200, 201, 202, and 203 if the word 1234 is stored at offset 200 and the word 5678 is stored at offset 202?

15. What is the offset at which the first exeutable instruction of a COM file must be placed?

16. Why was segmentation originally introduced in 8088 architecture?

17. Why a segment start cannot start from the physical address 55555.

18. Calculate the physical memory address generated by the following segment offset pairs.

a. 1DDD:0436

b. 1234:7920

c. 74F0:2123

d. 0000:6727

e. FFFF:4336

f. 1080:0100

g. AB01:FFFF

19. What are the first and the last physical memory addresses accessible using the following segment values?

a. 1000

b. 0FFF

c. 1002

d. 0001

e. E000

20. Write instructions that perform the following operations.

a. Copy BL into CL

b. Copy DX into AX

c. Store 0x12 into AL

d. Store 0x1234 into AX

e. Store 0xFFFF into AX

21. Write a program in assembly language that calculates the square of six by adding six to the accumulator six times.

xxxx0


Paragraph Boundary








Offset





64K





Segment Base





00000





FFFFF





Physical Address 





19-----------------------------------0





16bit Segment Register





0000





16bit Logical Address





0000





20bit Physical Address





15----------------------------0





15----------------------------0





Segment Address


--------------0





Offset Address


--------------0





1DDD0





Offset


0100





00000





FFFFF





1DED0





64K





Offset


0200





64K





1DCD0








